The concept of the constraint in Theory of Constraints is analogous to but differs from the constraint that shows up in mathematical optimization. In TOC, the constraint is used as a focusing mechanism for management of the system. In optimization, the constraint is written into the mathematical expressions to limit the scope of the solution (X can be no greater than 5). Please note: organizations have many problems with equipment, people, policies, etc. (A breakdown is just that – a breakdown – and is not a constraint in the true sense of the TOC concept) The constraint is the thing that is preventing the organization from getting more throughput (typically, revenue through sales) even when nothing goes wrong.
For non-material systems, one can draw the flow of work or the flow of processes and arrive at similar basic structures. A project, for example is an A-shaped sequence of work, culminating in a delivered project.
Buffers are used throughout the theory of constraints. They often result as part of the exploit and subordinate steps of the five focusing steps. Buffers are placed before the governing constraint, thus ensuring that the constraint is never starved. Buffers are also placed behind the constraint to prevent downstream failure from blocking the constraint’s output. Buffers used in this way protect the constraint from variations in the rest of the system and should allow for normal variation of processing time and the occasional upset (Murphy) before and behind the constraint.
Buffers can be a bank of physical objects before a work center, waiting to be processed by that work center. Buffers ultimately buy you time, as in the time before work reaches the constraint and are often verbalized as time buffers. There should always be enough (but not excessive) work in the time queue before the constraint and adequate offloading space behind the constraint. Buffers are not the small queue of work that sits before every work center in a Kanban system although it is similar if you regard the assembly line as the governing constraint. A prerequisite in the theory is that with one constraint in the system, all other parts of the system must have sufficient capacity to keep up with the work at the constraint and to catch up if time was lost. In a balanced line, as espoused by Kanban, when one work center goes down for a period longer than the buffer allows, then the entire system must wait until that work center is restored. In a TOC system, the only situation where work is in danger is if the constraint is unable to process (either due to malfunction, sickness or a “hole” in the buffer – if something goes wrong that the time buffer can not protect). Buffer management, therefore, represents a crucial attribute of the theory of constraints. There are many ways to apply buffers, but the most often used is a visual system of designating the buffer in three colours: green (okay), yellow (caution) and red (action required). Creating this kind of visibility enables the system as a whole to align and thus subordinate to the need of the constraint in a holistic manner. This can also be done daily in a central operations room that is accessible to everybody.
One caveat should be considered. Initially and only temporarily, the supply chain or a specific link may sell less as the surplus inventory in the system is sold. However, the immediate sales lift due to improved availability is a countervailing factor. The current levels of surpluses and shortages make each case different.
The primary measures for a TOC view of finance and accounting are: throughput, operating expense and investment. Throughput is calculated from sales minus “totally variable cost”, where totally variable cost is usually calculated as the cost of raw materials that go into creating the item sold.
The thinking processes are a set of tools to help managers walk through the steps of initiating and implementing a project. When used in a logical flow, the Thinking Processes help walk through a buy-in process:
- Gain agreement on the problem
- Gain agreement on the direction for a solution
- Gain agreement that the solution solves the problem
- Agree to overcome any potential negative ramifications
- Agree to overcome any obstacles to implementation
TOC practitioners sometimes refer to these in the negative as working through layers of resistance to a change. Recently, the current reality tree (CRT) and future reality tree (FRT) have been applied to an argumentative academic paper
Contact us to explore how an in-house workshop can take your organisation to the next level. Our TOC experts will help you configure an effective workshop design.
Contact us
TOC SA operates throughout SA